Show all work that leads to your answer (when applicable).

1. Consider $F(x) = \int_1^x (t^3 + \sqrt{t}) dt$. Find F'(x).

2. Suppose we know that $\int_{1}^{10} (3k(x) + 5) dx = 66$. What is the value of $\int_{1}^{10} k(x) dx$?

3.

The graph of the function f is shown above for $0 \le x \le 3$.

- I. Of the following, which has the **least** value? _____
- II. Of the following, which has the **most accurate** value?

A.
$$\int_{1}^{3} f(x)dx$$

- B. Left Riemann sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length
- C. Right Riemann sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length
- D. Midpoint Riemann sum approximation of $\int_1^3 f(x)dx$ with 4 subintervals of equal length
- E. Trapezoidal sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length

4. Let f be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of f', the derivative of f, consists of two semicircles and two line segments as shown to the right.

b) b) For -5 < x < 5, find all values of x at which f has a point of inflection. Justify your answer.

c) Find all intervals on which the graph of f is concave up and also has a positive slope.

d) Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.